Theory of Stein Spaces
Author | : H. Grauert |
Publisher | : Springer Science & Business Media |
Total Pages | : 269 |
Release | : 2013-03-14 |
ISBN-13 | : 9781475743579 |
ISBN-10 | : 1475743572 |
Rating | : 4/5 (72 Downloads) |
Download or read book Theory of Stein Spaces written by H. Grauert and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. The classical theorem of Mittag-Leffler was generalized to the case of several complex variables by Cousin in 1895. In its one variable version this says that, if one prescribes the principal parts of a merom orphic function on a domain in the complex plane e, then there exists a meromorphic function defined on that domain having exactly those principal parts. Cousin and subsequent authors could only prove the analogous theorem in several variables for certain types of domains (e. g. product domains where each factor is a domain in the complex plane). In fact it turned out that this problem can not be solved on an arbitrary domain in em, m ~ 2. The best known example for this is a "notched" bicylinder in 2 2 e . This is obtained by removing the set { (z , z ) E e 11 z I ~ !, I z 1 ~ !}, from 1 2 1 2 2 the unit bicylinder, ~ :={(z , z ) E e llz1