The Mathematical Foundation of Structural Mechanics
Author | : F. Hartmann |
Publisher | : Springer Science & Business Media |
Total Pages | : 383 |
Release | : 2012-12-06 |
ISBN-13 | : 9783642824012 |
ISBN-10 | : 3642824013 |
Rating | : 4/5 (13 Downloads) |
Download or read book The Mathematical Foundation of Structural Mechanics written by F. Hartmann and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book attempts to acquaint engineers who have mastered the essentials of structural mechanics with the mathematical foundation of their science, of structural mechanics of continua. The prerequisites are modest. A good working knowledge of calculus is sufficient. The intent is to develop a consistent and logical framework of theory which will provide a general understanding of how mathematics forms the basis of structural mechanics. Emphasis is placed on a systematic, unifying and rigorous treatment. Acknowledgements The author feels indebted to the engineers Prof. D. Gross, Prof. G. Mehlhorn and Prof. H. G. Schafer (TH Darmstadt) whose financial support allowed him to follow his inclinations and to study mathematics, to Prof. E. Klingbeil and Prof. W. Wendland (TH Darmstadt) for their unceasing effort to achieve the impossible, to teach an engineer mathematics, to the staff of the Department of Civil Engineering at the University of California, Irvine, for their generous hospitality in the academic year 1980-1981, to Prof. R. Szilard (Univ. of Dortmund) for the liberty he granted the author in his daily chores, to Mrs. Thompson (Univ. of Dortmund) and Prof. L. Kollar (Budapest/Univ. of Dortmund) for their help in the preparation of the final draft, to my young colleagues, Dipl.-Ing. S. Pickhardt, Dipl.-Ing. D. Ziesing and Dipl.-Ing. R. Zotemantel for many fruitful discussions, and to cando ing. P. Schopp and Frau Middeldorf for their help in the production of the manuscript. Dortmund, January 1985 Friedel Hartmann Contents Notations ........................................................... XII Introduction ........................................................ .