The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations
Author | : Jacob Bedrossian |
Publisher | : American Mathematical Society |
Total Pages | : 235 |
Release | : 2022-09-21 |
ISBN-13 | : 9781470470494 |
ISBN-10 | : 1470470497 |
Rating | : 4/5 (97 Downloads) |
Download or read book The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations written by Jacob Bedrossian and published by American Mathematical Society. This book was released on 2022-09-21 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to provide beginning graduate students who completed the first two semesters of graduate-level analysis and PDE courses with a first exposure to the mathematical analysis of the incompressible Euler and Navier-Stokes equations. The book gives a concise introduction to the fundamental results in the well-posedness theory of these PDEs, leaving aside some of the technical challenges presented by bounded domains or by intricate functional spaces. Chapters 1 and 2 cover the fundamentals of the Euler theory: derivation, Eulerian and Lagrangian perspectives, vorticity, special solutions, existence theory for smooth solutions, and blowup criteria. Chapters 3, 4, and 5 cover the fundamentals of the Navier-Stokes theory: derivation, special solutions, existence theory for strong solutions, Leray theory of weak solutions, weak-strong uniqueness, existence theory of mild solutions, and Prodi-Serrin regularity criteria. Chapter 6 provides a short guide to the must-read topics, including active research directions, for an advanced graduate student working in incompressible fluids. It may be used as a roadmap for a topics course in a subsequent semester. The appendix recalls basic results from real, harmonic, and functional analysis. Each chapter concludes with exercises, making the text suitable for a one-semester graduate course. Prerequisites to this book are the first two semesters of graduate-level analysis and PDE courses.