Medical Risk Prediction Models
Author | : Thomas A. Gerds |
Publisher | : CRC Press |
Total Pages | : 249 |
Release | : 2021-02-01 |
ISBN-13 | : 9780429764233 |
ISBN-10 | : 0429764235 |
Rating | : 4/5 (35 Downloads) |
Download or read book Medical Risk Prediction Models written by Thomas A. Gerds and published by CRC Press. This book was released on 2021-02-01 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medical Risk Prediction Models: With Ties to Machine Learning is a hands-on book for clinicians, epidemiologists, and professional statisticians who need to make or evaluate a statistical prediction model based on data. The subject of the book is the patient’s individualized probability of a medical event within a given time horizon. Gerds and Kattan describe the mathematical details of making and evaluating a statistical prediction model in a highly pedagogical manner while avoiding mathematical notation. Read this book when you are in doubt about whether a Cox regression model predicts better than a random survival forest. Features: All you need to know to correctly make an online risk calculator from scratch Discrimination, calibration, and predictive performance with censored data and competing risks R-code and illustrative examples Interpretation of prediction performance via benchmarks Comparison and combination of rival modeling strategies via cross-validation Thomas A. Gerds is a professor at the Biostatistics Unit at the University of Copenhagen and is affiliated with the Danish Heart Foundation. He is the author of several R-packages on CRAN and has taught statistics courses to non-statisticians for many years. Michael W. Kattan is a highly cited author and Chair of the Department of Quantitative Health Sciences at Cleveland Clinic. He is a Fellow of the American Statistical Association and has received two awards from the Society for Medical Decision Making: the Eugene L. Saenger Award for Distinguished Service, and the John M. Eisenberg Award for Practical Application of Medical Decision-Making Research.