Integral Geometry and Inverse Problems for Kinetic Equations
Author | : Anvar Kh. Amirov |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 212 |
Release | : 2014-07-24 |
ISBN-13 | : 9783110940947 |
ISBN-10 | : 3110940949 |
Rating | : 4/5 (49 Downloads) |
Download or read book Integral Geometry and Inverse Problems for Kinetic Equations written by Anvar Kh. Amirov and published by Walter de Gruyter GmbH & Co KG. This book was released on 2014-07-24 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph a method for proving the solvability of integral geometry problems and inverse problems for kinetic equations is presented. The application of this method has led to interesting problems of the Dirichlet type for third order differential equations, the solvability of which appears to depend on the geometry of the domain for which the problem is stated. Another considered subject is the problem of integral geometry on paraboloids, in particular the uniqueness of solutions to the Goursat problem for a differential inequality, which implies new theorems on the uniqueness of solutions to this problem for a class of quasilinear hyperbolic equations. A class of multidimensional inverse problems associated with problems of integral geometry and the inverse problem for the quantum kinetic equations are also included.