Hands-On Machine Learning with IBM Watson
Author | : James D. Miller |
Publisher | : Packt Publishing Ltd |
Total Pages | : 277 |
Release | : 2019-03-29 |
ISBN-13 | : 9781789616279 |
ISBN-10 | : 1789616271 |
Rating | : 4/5 (71 Downloads) |
Download or read book Hands-On Machine Learning with IBM Watson written by James D. Miller and published by Packt Publishing Ltd. This book was released on 2019-03-29 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to build complete machine learning systems with IBM Cloud and Watson Machine learning services Key FeaturesImplement data science and machine learning techniques to draw insights from real-world dataUnderstand what IBM Cloud platform can help you to implement cognitive insights within applicationsUnderstand the role of data representation and feature extraction in any machine learning systemBook Description IBM Cloud is a collection of cloud computing services for data analytics using machine learning and artificial intelligence (AI). This book is a complete guide to help you become well versed with machine learning on the IBM Cloud using Python. Hands-On Machine Learning with IBM Watson starts with supervised and unsupervised machine learning concepts, in addition to providing you with an overview of IBM Cloud and Watson Machine Learning. You'll gain insights into running various techniques, such as K-means clustering, K-nearest neighbor (KNN), and time series prediction in IBM Cloud with real-world examples. The book will then help you delve into creating a Spark pipeline in Watson Studio. You will also be guided through deep learning and neural network principles on the IBM Cloud using TensorFlow. With the help of NLP techniques, you can then brush up on building a chatbot. In later chapters, you will cover three powerful case studies, including the facial expression classification platform, the automated classification of lithofacies, and the multi-biometric identity authentication platform, helping you to become well versed with these methodologies. By the end of this book, you will be ready to build efficient machine learning solutions on the IBM Cloud and draw insights from the data at hand using real-world examples. What you will learnUnderstand key characteristics of IBM machine learning servicesRun supervised and unsupervised techniques in the cloudUnderstand how to create a Spark pipeline in Watson StudioImplement deep learning and neural networks on the IBM Cloud with TensorFlowCreate a complete, cloud-based facial expression classification solutionUse biometric traits to build a cloud-based human identification systemWho this book is for This beginner-level book is for data scientists and machine learning engineers who want to get started with IBM Cloud and its machine learning services using practical examples. Basic knowledge of Python and some understanding of machine learning will be useful.