Gate Stack Engineering for Emerging Polarization based Non-volatile Memories

Gate Stack Engineering for Emerging Polarization based Non-volatile Memories
Author :
Publisher : BoD – Books on Demand
Total Pages : 154
Release :
ISBN-13 : 9783744867887
ISBN-10 : 3744867889
Rating : 4/5 (89 Downloads)

Book Synopsis Gate Stack Engineering for Emerging Polarization based Non-volatile Memories by : Milan Pesic

Download or read book Gate Stack Engineering for Emerging Polarization based Non-volatile Memories written by Milan Pesic and published by BoD – Books on Demand. This book was released on 2017-07-14 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: The hafnium based ferroelectric memories offer a low power consumption, ultra-fast operation, non-volatile retention as well as the small relative cell size as the main requirements for future memories. These remarkable properties of ferroelectric memories make them promising candidates for non-volatile memories that would bridge the speed gap between fast logic and slow off-chip, long term storage. Even though the retention of hafnia based ferroelectric memories can be extrapolated to a ten-year specification target, they suffer from a rather limited endurance. Therefore, this work targets relating the field cycling behavior of hafnia based ferroelectric memories to the physical mechanisms taking place within the film stack. Establishing a correlation between the performance of the device and underlying physical mechanisms is the first step toward understanding the device and engineering guidelines for novel, superior devices. In the frame of this work, an in-depth ferroelectric and dielectric characterization, analysis and TEM study was combined with comprehensive modeling approach. Drift and diffusion based vacancy redistribution was found as the main cause for the phase transformation and consequent increase of the remnant polarization, while domain pinning and defect generation is identified to be responsible for the device fatigue. Finally, based on Landau theory, a simple way to utilize the high endurance strength of anti-ferroelectric (AFE) materials and achieve non-volatility in state-of-the-art DRAM stacks was proposed and the fabrication of the world's first non-volatile AFE-RAM is reported. These findings represent an important milestone and pave the way toward a commercialization of (anti)ferroelectric non-volatile memories based on simple binary-oxides.


Gate Stack Engineering for Emerging Polarization based Non-volatile Memories Related Books

Gate Stack Engineering for Emerging Polarization based Non-volatile Memories
Language: en
Pages: 154
Authors: Milan Pesic
Categories: Technology & Engineering
Type: BOOK - Published: 2017-07-14 - Publisher: BoD – Books on Demand

DOWNLOAD EBOOK

The hafnium based ferroelectric memories offer a low power consumption, ultra-fast operation, non-volatile retention as well as the small relative cell size as
Ferroelectricity in Doped Hafnium Oxide
Language: en
Pages: 572
Authors: Uwe Schroeder
Categories: Technology & Engineering
Type: BOOK - Published: 2019-03-27 - Publisher: Woodhead Publishing

DOWNLOAD EBOOK

Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices covers all aspects relating to the structural and electrical properties of HfO2 and i
Emerging Ferroelectric Materials and Devices
Language: en
Pages: 186
Authors:
Categories: Science
Type: BOOK - Published: 2023-11-27 - Publisher: Elsevier

DOWNLOAD EBOOK

Semiconductors and Semimetals series, highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an
Resistive Random Access Memory (RRAM)
Language: en
Pages: 71
Authors: Shimeng Yu
Categories: Technology & Engineering
Type: BOOK - Published: 2022-06-01 - Publisher: Springer Nature

DOWNLOAD EBOOK

RRAM technology has made significant progress in the past decade as a competitive candidate for the next generation non-volatile memory (NVM). This lecture is a
Chemical Abstracts
Language: en
Pages: 2540
Authors:
Categories: Chemistry
Type: BOOK - Published: 2002 - Publisher:

DOWNLOAD EBOOK