Data Science Quick Reference Manual Analysis and Visualization

Data Science Quick Reference Manual Analysis and Visualization
Author :
Publisher : Mario A.B. Capurso
Total Pages : 221
Release :
ISBN-13 :
ISBN-10 :
Rating : 4/5 ( Downloads)

Book Synopsis Data Science Quick Reference Manual Analysis and Visualization by : Mario A. B. Capurso

Download or read book Data Science Quick Reference Manual Analysis and Visualization written by Mario A. B. Capurso and published by Mario A.B. Capurso. This book was released on with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work follows the 2021 curriculum of the Association for Computing Machinery for specialists in Data Sciences, with the aim of producing a manual that collects notions in a simplified form, facilitating a personal training path starting from specialized skills in Computer Science or Mathematics or Statistics. It has a bibliography with links to quality material but freely usable for your own training and contextual practical exercises. Second of a series of books, it covers methodological aspects, analysis and visualization. It describes the CRISP DM methodology, the working phases, the success criteria, the languages and the environments that can be used, the application libraries. Since this book uses Orange for the application aspects, its installation and widgets are described. In visualization, historical notes are made, and next the book describes the characteristics of an effective visualization, the types of messages that can be conveyed, the Grammar of Graphics, the use of a graph and a dashboard, the software and libraries that can be used, the role and use of color. 55 types of graphs are then analyzed, reporting meaning, use, examples and visual dimensions also with a vocabulary of graphs and summary tables. Examples are given in Orange and the possible use of Python with Orange is explained. Visualization-based inference is discussed, exploratory and confirmatory analysis is defined and techniques are reported. The book is accompanied by supporting material and it is possible to download the project samples in Orange and sample data.


Data Science Quick Reference Manual Analysis and Visualization Related Books

Data Science Quick Reference Manual Analysis and Visualization
Language: en
Pages: 221
Authors: Mario A. B. Capurso
Categories: Computers
Type: BOOK - Published: - Publisher: Mario A.B. Capurso

DOWNLOAD EBOOK

This work follows the 2021 curriculum of the Association for Computing Machinery for specialists in Data Sciences, with the aim of producing a manual that colle
Data Science Quick Reference Manual Exploratory Data Analysis, Metrics, Models
Language: en
Pages: 323
Authors: Mario A. B. Capurso
Categories: Computers
Type: BOOK - Published: 2023-08-23 - Publisher: Mario Capurso

DOWNLOAD EBOOK

This work follows the 2021 curriculum of the Association for Computing Machinery for specialists in Data Sciences, with the aim of producing a manual that colle
Data Science Quick Reference Manual – Methodological Aspects, Data Acquisition, Management and Cleaning
Language: en
Pages: 228
Authors: Mario A. B. Capurso
Categories: Computers
Type: BOOK - Published: - Publisher: Mario Capurso

DOWNLOAD EBOOK

This work follows the 2021 curriculum of the Association for Computing Machinery for specialists in Data Sciences, with the aim of producing a manual that colle
Data Science Quick Reference Manual – Deep Learning
Language: en
Pages: 261
Authors: Mario A. B. Capurso
Categories: Computers
Type: BOOK - Published: 2023-09-04 - Publisher: Mario Capurso

DOWNLOAD EBOOK

This work follows the 2021 curriculum of the Association for Computing Machinery for specialists in Data Sciences, with the aim of producing a manual that colle
Data Science Quick Reference Manual - Advanced Machine Learning and Deployment
Language: en
Pages: 278
Authors: Mario A. B. Capurso
Categories: Computers
Type: BOOK - Published: 2023-09-08 - Publisher: Mario Capurso

DOWNLOAD EBOOK

This work follows the 2021 curriculum of the Association for Computing Machinery for specialists in Data Sciences, with the aim of producing a manual that colle