Aluminum-Lithium Alloys
Author | : N Eswara Prasad |
Publisher | : Butterworth-Heinemann |
Total Pages | : 596 |
Release | : 2013-09-20 |
ISBN-13 | : 9780124016798 |
ISBN-10 | : 0124016790 |
Rating | : 4/5 (90 Downloads) |
Download or read book Aluminum-Lithium Alloys written by N Eswara Prasad and published by Butterworth-Heinemann. This book was released on 2013-09-20 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because lithium is the least dense elemental metal, materials scientists and engineers have been working for decades to develop a commercially viable aluminum-lithium (Al-Li) alloy that would be even lighter and stiffer than other aluminum alloys. The first two generations of Al-Li alloys tended to suffer from several problems, including poor ductility and fracture toughness; unreliable properties, fatigue and fracture resistance; and unreliable corrosion resistance. Now, new third generation Al-Li alloys with significantly reduced lithium content and other improvements are promising a revival for Al-Li applications in modern aircraft and aerospace vehicles. Over the last few years, these newer Al-Li alloys have attracted increasing global interest for widespread applications in the aerospace industry largely because of soaring fuel costs and the development of a new generation of civil and military aircraft. This contributed book, featuring many of the top researchers in the field, is the first up-to-date international reference for Al-Li material research, alloy development, structural design and aerospace systems engineering. - Provides a complete treatment of the new generation of low-density AL-Li alloys, including microstructure, mechanical behavoir, processing and applications - Covers the history of earlier generation AL-Li alloys, their basic problems, why they were never widely used, and why the new third generation Al-Li alloys could eventually replace not only traditional aluminum alloys but more expensive composite materials - Contains two full chapters devoted to applications in the aircraft and aerospace fields, where the lighter, stronger Al-Li alloys mean better performing, more fuel-efficient aircraft