Practical Data Science with R, Second Edition
Author | : John Mount |
Publisher | : Simon and Schuster |
Total Pages | : 946 |
Release | : 2019-11-17 |
ISBN-13 | : 9781638352747 |
ISBN-10 | : 1638352747 |
Rating | : 4/5 (47 Downloads) |
Download or read book Practical Data Science with R, Second Edition written by John Mount and published by Simon and Schuster. This book was released on 2019-11-17 with total page 946 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Practical Data Science with R, Second Edition takes a practice-oriented approach to explaining basic principles in the ever expanding field of data science. You’ll jump right to real-world use cases as you apply the R programming language and statistical analysis techniques to carefully explained examples based in marketing, business intelligence, and decision support. About the technology Evidence-based decisions are crucial to success. Applying the right data analysis techniques to your carefully curated business data helps you make accurate predictions, identify trends, and spot trouble in advance. The R data analysis platform provides the tools you need to tackle day-to-day data analysis and machine learning tasks efficiently and effectively. About the book Practical Data Science with R, Second Edition is a task-based tutorial that leads readers through dozens of useful, data analysis practices using the R language. By concentrating on the most important tasks you’ll face on the job, this friendly guide is comfortable both for business analysts and data scientists. Because data is only useful if it can be understood, you’ll also find fantastic tips for organizing and presenting data in tables, as well as snappy visualizations. What's inside Statistical analysis for business pros Effective data presentation The most useful R tools Interpreting complicated predictive models About the reader You’ll need to be comfortable with basic statistics and have an introductory knowledge of R or another high-level programming language. About the author Nina Zumel and John Mount founded a San Francisco–based data science consulting firm. Both hold PhDs from Carnegie Mellon University and blog on statistics, probability, and computer science.