Néron Models and Base Change
Author | : Lars Halvard Halle |
Publisher | : Springer |
Total Pages | : 154 |
Release | : 2016-03-02 |
ISBN-13 | : 9783319266381 |
ISBN-10 | : 3319266381 |
Rating | : 4/5 (81 Downloads) |
Download or read book Néron Models and Base Change written by Lars Halvard Halle and published by Springer. This book was released on 2016-03-02 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the first systematic treatment of the behavior of Néron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Néron models of semi-abelian varieties, motivated by concrete research problems and complemented with explicit examples. Néron models of abelian and semi-abelian varieties have become an indispensable tool in algebraic and arithmetic geometry since Néron introduced them in his seminal 1964 paper. Applications range from the theory of heights in Diophantine geometry to Hodge theory. We focus specifically on Néron component groups, Edixhoven’s filtration and the base change conductor of Chai and Yu, and we study these invariants using various techniques such as models of curves, sheaves on Grothendieck sites and non-archimedean uniformization. We then apply our results to the study of motivic zeta functions of abelian varieties. The final chapter contains a list of challenging open questions. This book is aimed towards researchers with a background in algebraic and arithmetic geometry.