Layer Potentials, the Hodge Laplacian, and Global Boundary Problems in Nonsmooth Riemannian Manifolds

Layer Potentials, the Hodge Laplacian, and Global Boundary Problems in Nonsmooth Riemannian Manifolds
Author :
Publisher : American Mathematical Soc.
Total Pages : 137
Release :
ISBN-13 : 9780821826591
ISBN-10 : 082182659X
Rating : 4/5 (9X Downloads)

Book Synopsis Layer Potentials, the Hodge Laplacian, and Global Boundary Problems in Nonsmooth Riemannian Manifolds by : Dorina Mitrea

Download or read book Layer Potentials, the Hodge Laplacian, and Global Boundary Problems in Nonsmooth Riemannian Manifolds written by Dorina Mitrea and published by American Mathematical Soc.. This book was released on 2001 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: The general aim of the present monograph is to study boundary-value problems for second-order elliptic operators in Lipschitz sub domains of Riemannian manifolds. In the first part (ss1-4), we develop a theory for Cauchy type operators on Lipschitz submanifolds of co dimension one (focused on boundedness properties and jump relations) and solve the $Lp$-Dirichlet problem, with $p$ close to $2$, for general second-order strongly elliptic systems. The solution is represented in the form of layer potentials and optimal non tangential maximal function estimates are established.This analysis is carried out under smoothness assumptions (for the coefficients of the operator, metric tensor and the underlying domain) which are in the nature of best possible. In the second part of the monograph, ss5-13, we further specialize this discussion to the case of Hodge Laplacian $\Delta: =-d\delta-\delta d$. This time, the goal is to identify all (pairs of) natural boundary conditions of Neumann type. Owing to the structural richness of the higher degree case we are considering, the theory developed here encompasses in a unitary fashion many basic PDE's of mathematical physics. Its scope extends to also cover Maxwell's equations, dealt with separately in s14. The main tools are those of PDE's and harmonic analysis, occasionally supplemented with some basic facts from algebraic topology and differential geometry.


Layer Potentials, the Hodge Laplacian, and Global Boundary Problems in Nonsmooth Riemannian Manifolds Related Books

Layer Potentials, the Hodge Laplacian, and Global Boundary Problems in Nonsmooth Riemannian Manifolds
Language: en
Pages: 137
Authors: Dorina Mitrea
Categories: Mathematics
Type: BOOK - Published: 2001 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

The general aim of the present monograph is to study boundary-value problems for second-order elliptic operators in Lipschitz sub domains of Riemannian manifold
Layer Potentials, the Hodge Laplacian and Global Boundary Problems in Nonsmooth Riemannian Manifolds
Language: en
Pages: 0
Authors: Dorina Irena Mitrea
Categories:
Type: BOOK - Published: 2001 - Publisher:

DOWNLOAD EBOOK

Geometric Harmonic Analysis III
Language: en
Pages: 980
Authors: Dorina Mitrea
Categories: Mathematics
Type: BOOK - Published: 2023-05-12 - Publisher: Springer Nature

DOWNLOAD EBOOK

This monograph presents a comprehensive, self-contained, and novel approach to the Divergence Theorem through five progressive volumes. Its ultimate aim is to d
Geometric Harmonic Analysis I
Language: en
Pages: 940
Authors: Dorina Mitrea
Categories: Mathematics
Type: BOOK - Published: 2022-11-04 - Publisher: Springer Nature

DOWNLOAD EBOOK

This monograph presents a comprehensive, self-contained, and novel approach to the Divergence Theorem through five progressive volumes. Its ultimate aim is to d
The Hodge-Laplacian
Language: en
Pages: 528
Authors: Dorina Mitrea
Categories: Mathematics
Type: BOOK - Published: 2016-10-10 - Publisher: Walter de Gruyter GmbH & Co KG

DOWNLOAD EBOOK

The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators.