Hamilton’s Ricci Flow

Hamilton’s Ricci Flow
Author :
Publisher : American Mathematical Society, Science Press
Total Pages : 648
Release :
ISBN-13 : 9781470473693
ISBN-10 : 1470473690
Rating : 4/5 (90 Downloads)

Book Synopsis Hamilton’s Ricci Flow by : Bennett Chow

Download or read book Hamilton’s Ricci Flow written by Bennett Chow and published by American Mathematical Society, Science Press. This book was released on 2023-07-13 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ricci flow is a powerful analytic method for studying the geometry and topology of manifolds. This book is an introduction to Ricci flow for graduate students and mathematicians interested in working in the subject. To this end, the first chapter is a review of the relevant basics of Riemannian geometry. For the benefit of the student, the text includes a number of exercises of varying difficulty. The book also provides brief introductions to some general methods of geometric analysis and other geometric flows. Comparisons are made between the Ricci flow and the linear heat equation, mean curvature flow, and other geometric evolution equations whenever possible. Several topics of Hamilton's program are covered, such as short time existence, Harnack inequalities, Ricci solitons, Perelman's no local collapsing theorem, singularity analysis, and ancient solutions. A major direction in Ricci flow, via Hamilton's and Perelman's works, is the use of Ricci flow as an approach to solving the Poincaré conjecture and Thurston's geometrization conjecture.


Hamilton’s Ricci Flow Related Books

Hamilton’s Ricci Flow
Language: en
Pages: 648
Authors: Bennett Chow
Categories: Mathematics
Type: BOOK - Published: 2023-07-13 - Publisher: American Mathematical Society, Science Press

DOWNLOAD EBOOK

Ricci flow is a powerful analytic method for studying the geometry and topology of manifolds. This book is an introduction to Ricci flow for graduate students a
Introduction to Differential Geometry
Language: en
Pages: 426
Authors: Joel W. Robbin
Categories: Mathematics
Type: BOOK - Published: 2022-01-12 - Publisher: Springer Nature

DOWNLOAD EBOOK

This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of
The Ricci Flow: An Introduction
Language: en
Pages: 342
Authors: Bennett Chow
Categories: Mathematics
Type: BOOK - Published: 2004 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

The Ricci flow is a powerful technique that integrates geometry, topology, and analysis. Intuitively, the idea is to set up a PDE that evolves a metric accordin
An Introduction to Riemannian Geometry
Language: en
Pages: 476
Authors: Leonor Godinho
Categories: Mathematics
Type: BOOK - Published: 2014-07-26 - Publisher: Springer

DOWNLOAD EBOOK

Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first pa
Riemannian Manifolds
Language: en
Pages: 232
Authors: John M. Lee
Categories: Mathematics
Type: BOOK - Published: 2006-04-06 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical