Characterization of Wake Turbulence in a Wind Turbine Array Submerged in Atmospheric Boundary Layer Flow

Characterization of Wake Turbulence in a Wind Turbine Array Submerged in Atmospheric Boundary Layer Flow
Author :
Publisher :
Total Pages :
Release :
ISBN-13 : OCLC:927776681
ISBN-10 :
Rating : 4/5 ( Downloads)

Book Synopsis Characterization of Wake Turbulence in a Wind Turbine Array Submerged in Atmospheric Boundary Layer Flow by : Pankaj Jha

Download or read book Characterization of Wake Turbulence in a Wind Turbine Array Submerged in Atmospheric Boundary Layer Flow written by Pankaj Jha and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind energy is becoming one of the most significant sources of renewable energy. With its growing use, and social and political awareness, efforts are being made to harness it in the most efficient manner. However, a number of challenges preclude efficient and optimum operation of wind farms. Wind resource forecasting over a long operation window of a wind farm, development of wind farms over a complex terrain on-shore, and air/wave interaction off-shore all pose difficulties in materializing the goal of the efficient harnessing of wind energy. These difficulties are further amplified when wind turbine wakes interact directly with turbines located downstream and in adjacent rows in a turbulent atmospheric boundary layer (ABL). In the present study, an ABL solver is used to simulate different atmospheric stability states over a diurnal cycle. The effect of the turbines is modeled by using actuator methods, in particular the state-of-the-art actuator line method (ALM) and an improved ALM are used for the simulation of the turbine arrays. The two ALM approaches are used either with uniform inflow or are coupled with the ABL solver. In the latter case, a precursor simulation is first obtained and data saved at the inflow planes for the duration the turbines are anticipated to be simulated. The coupled ABL-ALM solver is then used to simulate the turbine arrays operating in atmospheric turbulence.A detailed accuracy assessment of the state-of-the-art ALM is performed by applying it to different rotors. A discrepancy regarding over-prediction of tip loads and an artificial tip correction is identified. A new proposed ALM* is developed and validated for the NREL Phase VI rotor. This is also applied to the NREL 5-MW turbine, and guidelines to obtain consistent results with ALM* are developed.Both the ALM approaches are then applied to study a turbine-turbine interaction problem consisting of two NREL 5-MW turbines. The simulations are performed for two ABL stability states. The effect of ABL stability as well the ALM approaches on the blade loads, turbulence statistics, unsteadiness, wake profile etc., is quantified. It is found that ALM and ALM* yield a noticeable difference in most of the parameters quantified. The ALM* also senses small-scale blade motions better. However, the ABL state dominates the wake recovery pattern. The ALM* is then applied to a mini wind farm comprising five NREL 5-MW turbines in two rows and in a staggered configuration. A detailed wake recovery study is performed using a unique wake-plane analysis technique. An actuator curve embedding (ACE) method is developed to model a general-shaped lifting surface. This method is validated for the NREL Phase VI rotor and applied to the NREL 5-MW turbine. This method has the potential for application to aero-elasticity problems of utility-scale wind turbines.


Characterization of Wake Turbulence in a Wind Turbine Array Submerged in Atmospheric Boundary Layer Flow Related Books

Characterization of Wake Turbulence in a Wind Turbine Array Submerged in Atmospheric Boundary Layer Flow
Language: en
Pages:
Authors: Pankaj Jha
Categories:
Type: BOOK - Published: 2015 - Publisher:

DOWNLOAD EBOOK

Wind energy is becoming one of the most significant sources of renewable energy. With its growing use, and social and political awareness, efforts are being mad
Wake Character in the Wind Turbine Array
Language: en
Pages: 266
Authors:
Categories: Anisotropy
Type: BOOK - Published: 2016 - Publisher:

DOWNLOAD EBOOK

To maximize the effectiveness of the rapidly increasing capacity of installed wind energy resources, new models must be developed that are capable of more nuanc
Atmospheric and wake turbulence impacts on wind turbine fatigue loading
Language: en
Pages: 13
Authors:
Categories: Atmospheric circulation
Type: BOOK - Published: 2011 - Publisher:

DOWNLOAD EBOOK

Influence of Atmospheric Boundary Layer on Turbulence in Wind Turbine Wake
Language: en
Pages: 126
Authors: Mithu Chandra Debnath
Categories:
Type: BOOK - Published: 2014 - Publisher:

DOWNLOAD EBOOK

Full-scale wind turbines (WT) operate in the atmospheric boundary layer. The atmospheric boundary layer structure significantly influences the turbulence genera
Response of the Wind-turbine Wake to a Turbulent Atmospheric Boundary-layer Flow
Language: en
Pages:
Authors: Antonia Englberger
Categories:
Type: BOOK - Published: 2017 - Publisher:

DOWNLOAD EBOOK