Multi-Modal Sentiment Analysis

Multi-Modal Sentiment Analysis
Author :
Publisher : Springer Nature
Total Pages : 278
Release :
ISBN-13 : 9789819957767
ISBN-10 : 9819957761
Rating : 4/5 (61 Downloads)

Book Synopsis Multi-Modal Sentiment Analysis by : Hua Xu

Download or read book Multi-Modal Sentiment Analysis written by Hua Xu and published by Springer Nature. This book was released on 2023-11-26 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: The natural interaction ability between human and machine mainly involves human-machine dialogue ability, multi-modal sentiment analysis ability, human-machine cooperation ability, and so on. To enable intelligent computers to have multi-modal sentiment analysis ability, it is necessary to equip them with a strong multi-modal sentiment analysis ability during the process of human-computer interaction. This is one of the key technologies for efficient and intelligent human-computer interaction. This book focuses on the research and practical applications of multi-modal sentiment analysis for human-computer natural interaction, particularly in the areas of multi-modal information feature representation, feature fusion, and sentiment classification. Multi-modal sentiment analysis for natural interaction is a comprehensive research field that involves the integration of natural language processing, computer vision, machine learning, pattern recognition, algorithm, robot intelligent system, human-computer interaction, etc. Currently, research on multi-modal sentiment analysis in natural interaction is developing rapidly. This book can be used as a professional textbook in the fields of natural interaction, intelligent question answering (customer service), natural language processing, human-computer interaction, etc. It can also serve as an important reference book for the development of systems and products in intelligent robots, natural language processing, human-computer interaction, and related fields.


Multi-Modal Sentiment Analysis Related Books