Modeling Dynamic Systems for Multi-step Prediction with Recurrent Neural Networks

Modeling Dynamic Systems for Multi-step Prediction with Recurrent Neural Networks
Author :
Publisher :
Total Pages : 145
Release :
ISBN-13 : OCLC:1036270099
ISBN-10 :
Rating : 4/5 ( Downloads)

Book Synopsis Modeling Dynamic Systems for Multi-step Prediction with Recurrent Neural Networks by : Nima Mohajerin

Download or read book Modeling Dynamic Systems for Multi-step Prediction with Recurrent Neural Networks written by Nima Mohajerin and published by . This book was released on 2017 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis investigates the applicability of Recurrent Neural Networks (RNNs) and Deep Learning methods for multi-step prediction of robotic systems. The unmodeled dynamics and simplifying assumptions in classic modeling methods result in models that yield rapidly diverging predictions when the model is used in an iterative fashion, i.e., for multi-step prediction. However, the effect of the unmodeled dynamics can be captured by collecting datasets of the system. Deep Learning provides a strong set of tools to extract patterns from data, however, large datasets are commonly required for the methods to work well. Collecting a large amount of data from a robotic system can be a cumbersome and expensive approach. In this work, Deep Learning methods, particularly RNNs, are studied and employed for the purpose of learning models of two aerial vehicles from experimental data. The feasibility of employing RNNs is first studied to learn a model of a quadrotor based on a simulated dataset, which yields a Multi Layer Fully Connected (MLFC) architecture. Models can be learned for multi-step prediction, recovering excellent predictions over 500 timesteps in the presence of simulated disturbances to the robot and noise on the measurements. To learn models from experimental data, the RNN state initialization problem is defined and formulated. It is shown that the RNN state initialization problem can be addressed by creating and training an initialization network jointly with the multi-step prediction network, and the combination can be used in a black-box modeling approach such that the model produces predictions which are immediately accurate. The RNN based black-box methods are trained on an experimental dataset gathered from a quadrotor and a publicly available helicopter dataset. The quadrotor dataset, which encompasses approximately 4 hours of flight data in various regimes, has been released and is now available publicly online. Finally, a hybrid network, which combines the proposed RNN based black-box models with a physics based quadrotor model into a single RNN-based modeling system is introduced. The proposed hybrid network solves many of the limitations of the existing state of the art in long-term prediction for robotics systems. Trained on the quadrotor dataset, the hybrid model provides accurate body angular rate and velocity predictions of the vehicle over almost 2 seconds which is suitable to be used in a variety of model-based controller applications.


Modeling Dynamic Systems for Multi-step Prediction with Recurrent Neural Networks Related Books

Modeling Dynamic Systems for Multi-step Prediction with Recurrent Neural Networks
Language: en
Pages: 145
Authors: Nima Mohajerin
Categories: Neural networks (Computer science)
Type: BOOK - Published: 2017 - Publisher:

DOWNLOAD EBOOK

This thesis investigates the applicability of Recurrent Neural Networks (RNNs) and Deep Learning methods for multi-step prediction of robotic systems. The unmod
Modeling Dynamical Systems with Recurrent Neural Networks
Language: en
Pages: 264
Authors: Fu-Sheng Tsung
Categories: Neural networks (Computer science)
Type: BOOK - Published: 1994 - Publisher:

DOWNLOAD EBOOK

Deep Learning in Multi-step Prediction of Chaotic Dynamics
Language: en
Pages: 111
Authors: Matteo Sangiorgio
Categories: Mathematics
Type: BOOK - Published: 2022-02-14 - Publisher: Springer Nature

DOWNLOAD EBOOK

The book represents the first attempt to systematically deal with the use of deep neural networks to forecast chaotic time series. Differently from most of the
Neural Networks for Identification, Prediction and Control
Language: en
Pages: 243
Authors: Duc T. Pham
Categories: Technology & Engineering
Type: BOOK - Published: 2012-12-06 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

In recent years, there has been a growing interest in applying neural networks to dynamic systems identification (modelling), prediction and control. Neural net
Modeling of Dynamic Systems Using Recurrent Neural Networks
Language: en
Pages: 114
Authors: Venugopal Siddhanti
Categories: Neural networks (Computer science)
Type: BOOK - Published: 2003 - Publisher:

DOWNLOAD EBOOK